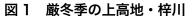


2021年11月30日


報道機関 各位

国立大学法人 信州大学 国立大学法人 筑波大学 英国 バーミンガム大学 ニュージーランド コースロン研究所

世界最寒地(上高地)に生きる二ホンザルの独特な越冬戦略: 魚類や水生昆虫類など,河川に生息する動物に依存する世界初の新知見

【研究成果のポイント】

- ニホンザルは世界の猿類(人類以外の霊長類)の中で最も寒い地域に生息する種であり、中でも上高地や志賀高原の高標高域に暮らす集団が、世界最寒地の集団とされる(北海道には生息せず、最北は下北半島の集団であるが、気温としては上高地や志賀高原の方が低い)。
- ニホンザルの集団成立には、最も厳しい冬季を生き抜くことができるかどうかに左右され、 集団サイズ(集団の密度)は冬季の餌資源により決まる。
- 2017-2019 年の冬季 3 シーズンにかけて、上高地のニホンザルの 38 糞サンプル(同一個体の 糞サンプルの重複を回避するように採取した糞サンプル)の DNA を網羅的に調べるメタゲ ノム解析*1を実施したところ、サケ科魚類や水生昆虫類(カワゲラ類やガガンボ類の幼虫:成 虫が存在しない冬季の幼虫)などの DNA が検出された。すなわち、厳冬季における栄養源と して、河川に生息する動物に依存している実態が究明された。
- 猿類が河川に生息する魚類を捕食すること自体が世界で初めての報告であり、水生昆虫類を餌として利用していることに関しても、糞(排泄物)のゲノム解析による直接的な証拠を得ることができた。加えて、餌として利用している水生昆虫種群の特定に結びついた研究も世界初の成果となる。

【背景】

信州大学 学術研究院 理学系 (理学部 理学科 生物学コース)・東城幸治教授の研究室では,20年近くにわたり上高地・梓川 (図1)をフィールドとした生態学的調査・研究を実施しており、上高地のニホンザル (図2)集団が、厳冬季に「川干し」と呼ばれるような水生昆虫を採取するような行動をとることを度々観察していました。

このようななか、上高地での山岳渓流を対象とする生態学分野の国際共同研究として、日本学 術振興会(JSPS)による「外国人研究者招聘(長期)」制度に採択された英国・バーミンガム大学

の A.ミルナー教授が信州大学に約 1 年間在籍 し、上高地での共同調査・研究を実施しました (この期間、ミルナー教授は信州大学・山岳科 学研究所・特任教授を兼任)。加えて、ミルナー 教授の研究室で博士号を取得した C.ドチャー ティ博士も、信州大学・山岳科学研究所・特任 助教として2年間在籍しておりました。

当時,信州大学の大学院に在籍していた竹中 將起博士(現在は筑波大学・生命環境系の特任 助教)らも参画した研究チームが上高地での共 同研究を展開する中で,ミルナー教授より,上 高地のニホンザルが行う「川干し」行動は世界 的にはほとんど知られておらず,科学的な調 査・研究を実施するべきであるとの提案がなさ れ,ニホンザル糞サンプルから,厳冬季の食性 を解明するための DNA メタバーコーディング 解析に着手しました。

図2 上高地のニホンザル

2017 年から 2019 年の冬季に、同一個体・同一日の糞サンプルを重複して解析することを避けるよう、サンプリング場所やサンプリング日を適宜変えながら採取した合計 38 の糞サンプルについて、次世代シーケンサー*2 でのメタゲノム解析法により、ニホンザルが餌資源として利用した動物由来の DNA 解析を実施しました。この次世代シーケンサーによるメタゲノム解析はニュージーランド・コースロン研究所が担当し、上高地に生息する水生生物における DNA バーコード領域の解析は、信州大学と筑波大学が担当しました。

【結果・考察】

全38の糞サンプルから,魚類や水生昆虫類,甲殻類,巻貝類のDNA断片が検出されました。一部には、陸域由来と考えられる動物(陸生貝類や土壌昆虫類)のDNAも含まれていましたが、多くは淡水域に生息する水生動物のDNAでした。約半数の糞サンプル(18/38サンプル)からは節足動物(水生昆虫類・水生甲殻類)のDNAが検出されました(カワゲラ類やガガンボ類、ユスリカ類)。また、2割弱の糞サンプル(7/38サンプル)からはサケ科魚類のDNAが検出され、約1/4の糞サンプル(6/38サンプル)からは淡水巻貝類(2種)のDNAが検出されました(図3)。

すなわち,これまで「川干し」として観察されてきた,上高地のニホンザルの行動について,実際に河川に生息する水生昆虫類や水生巻貝類を捕食していることが科学的に立証されました。ササや樹木の樹皮などに比べて,栄養価は極めて高く,また複数の冬季シーズンにわたり複数個体や複数の採取日のサンプルからも安定して水生昆虫類の DNA が検出されたことは,ニホンザルによる冬季の水生昆虫食や巻貝類食が安定した特徴であると考えられます。

Phylum	Class	Order	Family	Genus/species	% similarity	% coverage	Number of reads
Chordata	Actinopterygii	Salmoniformes	Salmonidae	Salmo trutta	100	100	2,745
Mollusca	Gastropoda	Littorinimorpha	Tateidae	Potamopyrgus antipodarum	99.7	100	16,103
	Gastropoda	Pleuroceridae	Semisulcospiridae	Semisulcospira dolorosa	100	100	179
Arthropoda	Hexanauplia	Cyclopoida	Cyclopidae	Mesocyclops leuckarti	99.7	100	6,842
	Insecta	Plecoptera	Nemouridae	Nemoura fulva	98.7	100	6
	Insecta	Diptera	Tipulidae	Tipula sp.	94.9	100	440
	Insecta	Diptera	Chironomidae	Conchapelopia sp.	93.2	100	203
	Insecta	Plecoptera	Chloroperlidae	Sweltsa sp.	90.6	100	61
	Insecta	Diptera	Dixidae	Dixa sp.	90.4	100	6
	Insecta	Diptera	Chironomidae		87.5	100	2,547

% similarity = percentage of similarity between the sequences found in the fecal samples and the sequences in the GenBank database; % coverage = percentage of the sequence found in our sample aligned to a sequence in GenBank; number of reads = number of times that same sequence occurred in the samples.

図3 上高地のニホンザル集団の糞サンプルから検出された塩基配列データに基づく DNA バーコーディングの主な結果 Chordata (脊椎動物) はサケ科魚類、Mollusca (軟体動物) は淡水巻貝類で、Arthropoda (節足動物) には甲殻類や昆虫類が含まれている

また、サケ科魚類の DNA が 2018 年と 2019 年の冬季の複数の採取日の複数の糞サンプルから検 出されたことは研究チームとしても想定外の成果であったが、衰弱したり(死亡した)魚類を摂 食したようなアクシデント的なことではなく、餌資源としてコンスタントに利用している可能性 が高いと考えられます。離島では、漁師が放棄した海産魚類や打ち上げられて魚類(死体)をニ ホンザルが摂食する事例は知られていますが、自然状況下でニホンザルが魚類を捕食する事例は なく、猿類としても世界で初めの知見となります。

多積雪地域のニホンザル集団は他の地域からも数多く知られていますが、水生昆虫や魚類を捕食するような行動は知られておらず、このような行動は、上高地やこの周辺地域だけの独特な特徴であるのかもしれません。冬季の上高地では、梓川の水位が低下し、表流水の流量は大きく減少します。また、梓川に流入する小さな規模の沢には湧水を起源とする沢も多く、比較的平坦な盆地内を緩やかに流れています。湧水が占める割合が高い沢では、冬季の水温は5-6℃程度と安定しています。このような湧水が豊富な上高地の地形や水文環境も、ニホンザルの特異な行動や採餌行動・生態に深く関連しているものと考えられます。また、水生昆虫に関しては、冬期の時期には幼虫のステージであるため、陸上を飛翔している成虫ではなく水中にいる幼虫であり、河川内の水生昆虫を捕食していることを示しました。

【波及効果・今後の予定】

本研究の成果は、世界で最も厳しい環境下でくらしている上高地のニホンザル集団に関する独特な越冬戦略に関する知見を提供するものです(**図4**)。ニホンザルに限らず猿類の行動・生態全般において、河川に生息する水生生物を餌資源として依存することは、従来、想定されてこなかった特異な形質です。さらに、魚類の捕食に関しては驚くべき結果と言えます。オランウータンでは淡水魚を捕獲・捕食する行動が報告されていますが、猿類では初めての知見です。ただし、ニホンザルがどのようにサケ科魚類を捕獲しているのか? 現場での捕獲シーンの観察はできておらず、今後の課題です。

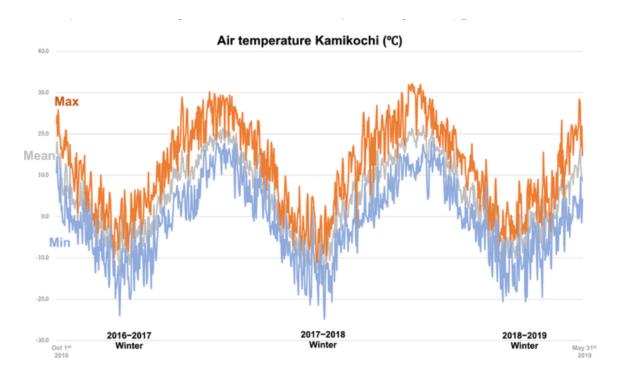


図4 上高地の気温(信州大学理学部・上高地フィールドステーション)。最寒では-20℃を下回るような地域にニホンザルが生息している

【用語解説】

*1 メタゲノム解析

メタゲノム解析の「メタ」とは、「超越」を意味するメタ(meta-)に「ゲノム」を融合した 造語であり、この研究では、ニホンザルの糞内に含まれている餌資源由来のゲノム DNA を 抽出・精製して直接シークエンスすることで網羅的に解析することをメタゲノム解析とよ ぶ。ここでいう「網羅的」とは、糞サンプル内の複数の動物由来の DNA を混合した状態で 抽出し、得られた塩基配列の断片データを解読することである。このようにして得られた塩 基配列のデータに対し、GenBank に登録されている配列データや上高地で採取した河川に 生息する水生昆虫類の遺伝情報などを参照しながら、糞サンプル内に含まれていた餌資源 の DNA を特定(DNA バーコーディング)しようとする試みである。

*2 次世代シーケンサー

複数の生物種や個体に由来する塩基配列を含め, 数千から数百万もの DNA 分子を同時に配

列決定することができる技術を次世代シーケンシング (NGS) といい、そのような解析を可能とする機器のことを次世代シーケンサーと呼ぶ。

【論文タイトルと著者等】

タイトル: Winter diet of Japanese macaques from Chubu Sangaku National Park, Japan incorporates freshwater biota

著 者: Alexander M. MILNER, Susanna A. WOOD, Catherine DOCHERTY, Laura BIESSY, Masaki TAKENAKA, Koji TOJO

掲載誌: Scientific Reports

掲 載 日:2021年11月29日(イギリス現地時刻10時)

U R L: https://www.nature.com/articles/s41598-021-01972-2

D O I: 10.1038/s41598-021-01972-2

Alexander M. MILNER(信州大学、バーミンガム大学)責任著者

Susanna A. WOOD (コースロン研究所)

Catherine DOCHERTY (信州大学, バーミンガム大学)

Laura BIESSY(コースロン研究所)

Masaki TAKENAKA(筑波大学)

Koji TOJO (信州大学)

【問い合わせ先】

〈研究内容に関する問い合わせ先〉

信州大学学術研究院理学系(理学部理学科生物学コース)

教授 東城幸治

Tel: 0263-37-3341, 0263-37-3142 E-mail: ktojo@shinshu-u.ac.jp

〈報道に関する問い合わせ先〉

国立大学法人信州大学 総務部総務課広報室

〒390-8621 長野県松本市旭 3-1-1

Tel: 0263-37-3056 Fax: 0263-37-2182 E-mail: shinhp@shinshu-u.ac.jp

国立大学法人筑波大学 広報室

TEL: 029-853-2040 Fax: 029-853-2014 E-mail: <u>kohositu@un.tsukuba.ac.jp</u>